An Introduction to Chemical Science

Contents:
Author: Rufus Phillips Williams

Chapter XLVI. Calcium Compounds.

Examine CaCO3—marble, limestone, chalk, not crayon,—CaSO4 — gypsum or selenite—CaCl2, CaO.

249. Occurrence.—The above are the chief compounds of Ca. The element itself is not found uncombined, is very difficult to reduce (page 141), is a yellow metal, and has no use. Its most abundant compound is CaCO3. Shells of oysters, clams, snails, etc., are mainly CaCO3, and coral reefs, sometimes extending thousands of miles in the ocean, are the same. CaCO3 dissolves in water holding CO2, and thence these marine animals obtain it and therefrom secrete their bony framework. All mountains were first laid down on the sea bottom layer by layer, and afterwards lifted up by pressure. Rocks and mountains of CaCO3 were formed by marine animals, and all large masses of CaCO3 are thought to have been at one time the framework of animals. Marble is crystallized, transformed limestone. The process, called metamorphism, took place in the depths of the earth, where the heat is greater than at the surface.

250. Lime.—If CaCO3 be roasted with C, CO2 escapes and CaO is left. CaCO3 - CO2 = ? This is called burning lime, and is a large industry in limestone countries. CaO is unslaked lime, quicklime or calcium oxide. It may be slaked either by exposure to the air, air-slaking, when it gradually takes up H2O and CO2; or by mixing with H2O, water-slaking. Ca0 + H2O = Ca(OH)2.

Great heat is generated in the latter case, though not so much as in the formation of KOH and NaOH. Like them, Ca(OH)2 dissolves in water, forming lime-water. Milk of lime, cream of lime, etc., consist of particles of Ca(OH)2 suspended in H2O.

251. Uses of Lime—CaO is infusible at the highest temperatures. If it be introduced into the oxy-hydrogen blow-pipe (page 28), a brilliant light, second only to the electric, is produced. Mortar is made by mixing CaO, H2O, and Si02. It hardens by evaporating the extra H2O, absorbing CO2 from the air, and uniting with Si02 to form calcium silicate. It often continues to absorb CO2 for hundreds or thousands of years before being saturated, as is found in the Egyptian pyramids. Hence the tenacity of old mortar. Hydraulic mortar contains silicates of Al and Ca, and is not affected by water. What are the uses of mortar? Being the important constituent of mortar and plaster, lime is the most useful of the bases.

252. Hard Water.—Review Experiment 76. The solubility of CaCO3 in water that contains CO2 leads to important results. Much dissolves in the waters of all limestone countries; and the water, though perfectly transparent, is hard; i.e. soap has little action on it. See page 187. Such water may be softened by boiling, a deposit of CaCO3 being formed as a crust on the kettle. Such water is called water of temporary hardness. MgCO3 produces a similar effect, and water containing it is softened in the same way. Permanently hard waters contain the sulphates of Ca and Mg, which cannot be removed by boiling, but may be by adding (NH4)2CO3. 253. The Formation of Caves in limestone rocks is due also to the solubility of CaCO3. Water collects on the mountains and trickles down through crevices, dissolving, if it contains CO2, some of the CaCO3, and thus making a wider opening, and forcing its way along fissures and lines of least resistance into the interior of the earth, or out at the base of the mountain. Its channel widens as it dissolves the rock, and the stream enlarges until in the course of ages an immense cavern may be formed, with labyrinths extending for miles, from the entrance of which a river often issues. In the long ages which elapsed during the slow formation of Mammoth Cave its denizens lost many of the characters of their ancestors, and eyeless fish and also eyeless insects now abound there.

254. Reverse Action.—Drops of water on the roofs of these caverns lose their CO2, and deposit CaCO3. Thus long, pendant masses of limestone, called stalactites, are slowly formed on the roofs like icicles. From these, water charged with CaCO3 drops to the bottom, loses CO2 and deposits CaCO3, which forms an upwardgrowing mass, called stalagmite. In time it may meet the stalactite and form a pillar. Notice that the same action which formed the cave is filling it up; i.e. the solubility of CaCO3 in water charged with CO2.

255. Famous Marbles.—The marble from Carrara, Italy, is most esteemed on account of a pinkish tint given by a trace of oxide of iron. The best of Grecian marble was from Paros, one of the Cyclades. The isles of the Mediterranean are of limestone, or of volcanic, origin, often of both. 256. Calcium Sulphate occurs in two forms, (1) with water of crystallization—gypsum, CaSO4 + 2 H2O, —(2) without it—anhydrite, CaSO4. The former, on being strongly heated, gives up its water, and is reduced to a powder— plaster of Paris. This, on being mixed with water, again takes up 2 H2O, and hardens, or sets, without crystallizing. If once more heated to expel water, it will not again absorb it. When plaster of Paris sets, it expands slightly, and on this account is admirable for taking casts.

257. Uses.—Gypsum finds use as a fertilizer and as an adulterant in coloring-materials, etc. CaSO4 is employed in making casts, molds, statuettes, wall-plaster, crayons, etc.

How can CaCl2 be made? What is its use? See page 27. What else is used for a similar purpose?

Symbolize and name the acid represented by Ca(ClO)2, and name this salt (page 107). It is one of the constituents of bleachingpowder, the symbol of which, though still under discussion, may be considered Ca(ClO)2 + CaCl2. This is made by passing Cl over Ca(OH)2 2 Ca(OH)2 + 4 Cl = Ca(ClO)2 + CaCl2 + 2 H2O.

Contents:

Related Resources

None available for this document.

Download Options


Title: An Introduction to Chemical Science

Select an option:

*Note: A download may not start for up to 60 seconds.

Email Options


Title: An Introduction to Chemical Science

Select an option:

Email addres:

*Note: It may take up to 60 seconds for for the email to be generated.

Chicago: Rufus Phillips Williams, "Chapter XLVI. Calcium Compounds.," An Introduction to Chemical Science, ed. Bryant Conant, James in An Introduction to Chemical Science Original Sources, accessed August 9, 2022, http://www.originalsources.com/Document.aspx?DocID=3U1SWMK39Y2GIF5.

MLA: Williams, Rufus Phillips. "Chapter XLVI. Calcium Compounds." An Introduction to Chemical Science, edited by Bryant Conant, James, in An Introduction to Chemical Science, Original Sources. 9 Aug. 2022. http://www.originalsources.com/Document.aspx?DocID=3U1SWMK39Y2GIF5.

Harvard: Williams, RP, 'Chapter XLVI. Calcium Compounds.' in An Introduction to Chemical Science, ed. . cited in , An Introduction to Chemical Science. Original Sources, retrieved 9 August 2022, from http://www.originalsources.com/Document.aspx?DocID=3U1SWMK39Y2GIF5.