James Nasmyth: Engineer; an Autobiography

Author: James Nasmyth

Chapter 18. Astronomical Pursuits.

Let me turn for a time from the Foundry, the whirr of the self-acting tools, and the sound of the steam hammers, to my quieter pursuits at home. There I had much tranquil enjoyment in the company of my dear wife. I had many hobbies. Drawing was as familiar to me as language. Indeed, it was often my method of speaking. It has always been the way in which I have illustrated my thoughts. In the course of my journeys at home and abroad I made many drawings of places and objects, which were always full of interest, to me at least; and they never ceased to bring up a store of happy remembrances.

Now and then I drew upon my fancy, and with pen and ink I conjured up "The Castle of Udolpho," " A Bit of Old England," "The Fairies are Out," and "Everybody for Ever." The last is crowded with thousands of figures and heads, so that it is almost impossible to condense the drawing into a small compass. To these I added "The Alchemist," "Old Mortality," "Robinson Crusoe," and a bit of English scenery, which I called "Gathering Sticks." I need not say with how much pleasure I executed these drawings in my evening hours. They were not "published," but I drew them with lithographic ink, and had them printed by Mr. Maclure. I afterwards made presents of the series to some of my most intimate friends.

[Image] The Antiquarian. By James Nasmyth (Facsimile)

In remembrance of the great pleasure which I had derived from the perusal of Washington Irving’s fascinating works, I sent him a copy of my sketches. His answer was charming and characteristic. His letter was dated " Sunnyside," Massachusetts, where he lived. He said (17th January 1859):

DEAR SIR—Accept my most sincere and hearty thanks for the exquisite fancy sketches which you have had the kindness to send me, and for the expressions of esteem and regard in the letter which accompanied them. It is indeed a heartfelt gratification to me to think that I have been able by any exercise of my pen to awaken such warm and delicate sympathies, and to call forth such testimonials of pleasure and approbation from a person of your cultivated taste and intellectual elevation. With high respect and regard, I remain, nay dear sir, your truly obliged friend, Washington Irving."

[Image] The Fairies. By James Nasmyth. (Facsimile)

Viscount Duncan, afterwards Earl Camperdown, also acknowledged receipt of the drawings in a characteristic letter. He said: —"We are quite delighted with them, especially with ’The Fairies,’ which a lady to whom I showed them very nearly stole, as she declared that it quite realised her dreams of fairyland. I am only surprised that amidst your numerous avocations you have found time to execute such detailed works of art; and I shall have much pleasure in being reminded as I look at the drawings that the same hand and head that executed them invented the steam hammer, and many other gigantic pieces of machinery which will tend to immortalise the Anglo-saxon race."

But my most favourite pursuit, after my daily exertions at the Foundry, was Astronomy. There were frequently clear nights when the glorious objects in the Heavens were seen in most attractive beauty and brilliancy.

I cannot find words to express the thoughts which the impressive grandeur of the Stars, seen in the silence of the night, suggested to me; especially when I directed my Telescope, even at random, on any portion of the clear sky, and considered that each Star of the multitude it revealed to me, was a SUN! the centre of a system! Myriads of such stars, invisible to the unassisted eye, were rendered perfectly distinct by the aid of the telescope. The magnificence of the sight was vastly increased when the telescope was directed to any portion of the Milky Way. It revealed such countless multitudes of stars that I had only to sit before the eyepiece, and behold the endless procession of these glorious objects pass before me. The motion of the earth assisted in changing this scene of inexpressible magnificence, which reached its climax when some object such as the "Cluster in Hercules" came into sight. The component stars are so crowded together there as to give the cluster the appearance of a gray spot; but when examined with a telescope of large aperture, it becomes resolved into such myriads of stars as to defy all attempts to count them. Nothing can convey to the mind, in so awful and impressive a manner, the magnificent and infinite extent of Creation, and the inconceivable power of its Creator!

I had already a slight acquaintance with Astronomy. My father had implanted in me the first germs. He was a great admirer of that sublimest of sciences. I had obtained a sufficient amount of technical knowledge to construct in 1827 a small but very effective reflecting telescope of six inches diameter. Three years later I initiated Mr. Maudslay into the art and mystery of making a reflecting telescope. I then made a speculum of ten inches diameter, and but for the unhappy circumstance of his death in 1831, it would have been mounted in his proposed observatory at Norwood. After I had settled down at Fireside, Patricroft, I desired to possess a telescope of considerable power in order to enjoy the tranquil pleasure of surveying the heavens in their impressive grandeur at night.

As I had all the means and appliances for casting specula at the factory, I soon had the felicity of embodying all my former self-acquired skill in this fine art by producing a very perfect casting of a ten-inch diameter speculum. The alloy consisted of fifteen parts of pure tin and thirty-two parts of pure copper, with one part of arsenic. It was cast with perfect soundness, and was ground and polished by a machine which I contrived for the purpose. The speculum was so brilliant that when my friend William Lassell saw it, he said "it made his mouth water." It was about this time (1840) that I had the great happiness of becoming acquainted with Mr. Lassell,*
[footnote... Mr. Lassell was a man of superb powers. Like many others who have done so much for astronomy, he started as an amateur. He was first apprenticed to a merchant at Liverpool. He then began business as a brewer. Eventually he devoted himself to astronomy and astronomical mechanics. When in his twenty-first year he began constructing reflecting telescopes for himself. He proceeded to make a Newtonian of nine inches aperture, which he erected in an observatory at his residence near Liverpool, happily named "Starfield." With this instrument he worked diligently, and detected the sixth star in the trapezium of Orion. In 1844 he conceived the bold idea of constructing a reflector of two feet aperture, and twenty feet focal length, to be mounted equatorially. Sir John Herschel, in mentioning Mr. Lassell’s work, did me the honour of saying "that in Mr Nasmyth he was fortunate to find a mechanist capable of executing in the highest perfection all his conceptions, and prepared by his own love of astronomy and practical acquaintance with astronomical observations, and with the construction of specula, to give them their full effect." With this fine instrument Mr. Lassell discovered the satellite of Neptune. He also discovered the eighth satellite of Saturn, of extreme minuteness, as well as two additional satellites of Uranus. But perhaps his best work was done at Malta with a much larger telescope, four feet in aperture, and thirty-seven feet focus, erected there in 1861. He remained at Malta for three years, and published a catalogue of 600 new nebulae, which will be found in the Memoirs of the Royal Astronomical Society. One of his curious sayings was, "I have had a great deal to do with opticians, some of them—like Cooke of York—are really opticians; but the greater number of them are merely shopticians!"
...] and profiting by his devotion to astronomical pursuits and his profound knowledge of the subject. He had acquired much technical skill in the construction of reflecting telescopes, and the companionship between us was thus rendered very agreeable. There was an intimate exchange of opinions on the subject, and my friendship with him continued during forty successive years. I was perhaps a little ahead of him in certain respects. I had more practical knowledge of casting, for I had begun when a boy in my bedroom at Edinburgh. In course of time I contrived many practical "dodges" (if I may use such a word), and could nimbly vault over difficulties of a special kind which had hitherto formed a barrier in the way of amateur speculum makers when fighting their way to a home-made telescope. I may mention that I know of no mechanical pursuit in connection with science, that offers such an opportunity for practising the technical arts, as that of constructing from first to last a complete Newtonian or Gregorian Reflecting Telescope. Such an enterprise brings before the amateur a succession of the most interesting and instructive mechanical arts, and obliges the experimenter to exercise the faculty of delicate manipulation. If I were asked what course of practice was the best to instil a true taste for refined mechanical work, I should say, set to and make for yourself from first to last a reflecting telescope with a metallic speculum. Buy nothing but the raw material, and work your way to the possession of a telescope by means of your own individual labour and skill. If you do your work with the care, intelligence, and patience that is necessary, you will find a glorious reward in the enhanced enjoyment of a night with the heavens—all the result of your own ingenuity and handiwork. It will prove a source of abundant pleasure and of infinite enjoyment for the rest of your life.

I well remember the visit I received from my dear friend Warren de la Rue in the year 1840. I was executing some work for him with respect to a new process which he had contrived for the production of white lead. I was then busy with the casting of my thirteen-inch speculum. He watched my proceedings with earnest interest and most careful attention. He told me many years after, that it was the sight of my special process of casting a sound speculum that in a manner caused him to turn his thoughts to practical astronomy, a subject in which he has exhibited such noble devotion as well as masterly skill. Soon after his visit I had the honour of casting for him a thirteen-inch speculum, which he afterwards ground and polished by a method of his own. He mounted it in an equatorial instrument of such surpassing excellence as enabled him, aided by his devotion and pure love of the subject, to record a series of observations and results which will hand his name down to posterity as one of the most faithful and patient of astronomical observers.

[Image] Fireside, Patricroft. After a drawing by James Nasmyth

But to return to my own little work at Patricroft. I mounted my ten-inch home-made reflecting telescope, and began my survey of the heavens. Need I say with what exquisite delight the harmony of their splendour filled me. I began as a learner, and my learning grew with experience. There were the prominent stars, the planets, the Milky Way —with thousands of far-off suns—to be seen. My observations were at first merely general; by degrees they became particular. I was not satisfied with enjoying these sights myself; I made my friends and neighbours sharers in my pleasure; and some of them enjoyed the wonders of the heavens as much as I did.

In my early use of the telescope I had fitted the speculum into a light square tube of deal to which the eye-piece was attached, so as to have all the essential parts of the telescope combined together in the most simple and portable form. I had often to remove it from place to place in my small garden at the side of the Bridgewater Canal, in order to get it clear of the trees and branches which intercepted some object in the heavens which I wished to see. How eager and enthusiastic I was in those days! Sometimes I got out of bed in the clear small hours of the morning, and went down to the garden in my night-shirt. I would take the telescope in my arms and plant it in some suitable spot, where I might get a peep at some special planet or star then above the horizon.

It became bruited about that a ghost was seen at Patricroft! A barge was silently gliding along the canal near midnight, when the boatman suddenly saw a figure in white. "It moved among the trees with a coffin in its arms!" The apparition was so sudden and strange that he immediately concluded that it was a ghost. The weird sight was reported at the stations along the canal, and also at Wolverhampton, which was the boatman’s headquarters. He told the people at Patricroft on his return journey what he had seen, and great was the excitement produced. The place was haunted: there was no doubt about it! After all, the rumour was founded on fact, for the ghost was merely myself in my night-shirt, and the coffin was my telescope, which I was quietly shifting from one place to another in order to get a clearer sight of the heavens at midnight.

My ambition expanded. I now resolved to construct a reflecting telescope of considerably greater power than that which I possessed. I made one of twenty inches diameter, and mounted it on a very simple plan, thus removing many of the inconveniences and even personal risks that attend the use of such instruments. (For illustration of the plan of mounting a large telescope, see p. 338) It had been necessary to mount steps or ladders to get at the eyepiece, especially when the objects to be observed were at a high elevation above the horizon. I now prepared to do some special work with this instrument. In 1842 I began my systematic researches upon the Moon. I carefully and minutely scrutinised the marvellous details of its surface, a pursuit which I continued for many years, and still continue with ardour until this day. My method was as follows: —

I availed myself of every favourable opportunity for carrying on the investigation. I made careful drawings with black and white chalk on large sheets of grey-tinted paper, of such selected portions of the Moon as embodied the most characteristic and instructive features of her wonderful surface. I was thus enabled to graphically represent the details with due fidelity as to form, as well as with regard to the striking effect of the original in its masses of light and shade. I thus educated my eye for the special object by systematic and careful observation, and at the same time practised my hand in no less careful delineation of all that was so distinctly presented to me by the telescope—at the side of which my sheet of paper was handily fixed. I became in a manner familiar with the vast variety of those distinct manifestations of volcanic action, which at some inconceivably remote period had produced these wonderful features and details of the moon’s surface. So far as could be observed, there was an entire absence of any agency of change, so that their formation must have remained absolutely intact since the original cosmical heat of the moon had passed rapidly into space. The surface, with all its wondrous details, presents the same aspect as it did probably millions of ages ago.

This consideration vastly enhances the deep interest with which we look upon the moon and its volcanic details. It is totally without an atmosphere, or of a vapour envelope, such as the earth possesses, and which must have contributed to the conservation of the cosmical heat of the latter orb. The moon is of relatively small mass, and is consequently inferior in heat-retaining power. It must thus have parted with its original stock of cosmical heat with such rapidity as to bring about the final termination of those surface changes which give it so peculiar an aspect. In the case of the earth the internal heat still continues in operation, though in a vastly reduced degree of activity. Again in the case of the moon, the total absence of water as well as atmosphere has removed from it all those denudative activities which, in the earth, have acted so powerfully in effecting changes of its surfaces as well as in the distribution of its materials. Hence the appearance of the wonderful details of the moon’s surface presents us with objects of inconceivably remote antiquity.

[Image] General structure of Lunar craters.

Another striking characteristic of the moon’s surface is the enormous magnitude of its volcanic crater formations. In comparison with these, the greatest on the surface of the earth are reduced to insignificance. Paradoxical as the statement may at first appear, the magnitude of the remains of the primitive volcanic energy in the moon is simply due to the smallness of its mass. Being only about one-eightieth part of the bulk of the earth, the force of gravity on the moon’s surface is only about one-sixth. And as eruptive force is quite independent, as a force, of the law of gravitation, and as it acted with its full energy on matter, which in the moon is little heavier than cork, it was dispersed in divergent flight from the vent of the volcanoes, free from any atmospheric resistance, and thus secured an enormously wider dispersion of the ejected scoriae. Hence the building up of those enormous ring-formed craters which are seen in such vast numbers on the moon’s surface—some of them being no less than a hundred miles in diameter, with which those of Etna and Vesuvius are the merest molehills in comparison.

I may mention, in passing, that the frequency of a central cone within these ring-shaped lunar craters supplies us with one of the most distinct and unquestionable evidences of the true nature and mode of the formation of volcanoes.

They are the result of the expiring energy of the volcanic discharge, which, when near its termination, not having sufficient energy to eject the matter far from its vent, becomes deposited around it, and thus builds up the central cone as a sort of monument to commemorate its expiring efforts. In this way it recalls the exact features of our own terrestrial craters, though the latter are infinitely smaller in comparison. When we consider how volcanoes are formed— by the ejection and exudation of material from beneath the solid crust— it will be seen how the lunar eminences are formed; that is, by the forcible projection of fluid molten matter through cracks or vents, through which it makes its way to the surface.

[Image] Pico, an isolated Lunar Mountain 8000 feet high.

It was in reference to this very interesting subject that I made a drawing of the great isolated volcanic mountain Pico, about 8000 feet high.*
[footnote... this illustration exhibits a class of volcanic formations that may be seen on many portions of the moon’s surface. They are what I would term exudative volcanic mountains, the results of a comparatively gentle discharge of volcanic matter, which has resulted in heaped up eminences; a vast group of which were displayed in the illustration, some of them being upwards of 20,000 feet high.

It exhibits a very different appearance from that of our mountain ranges, which are for the most part the result of a tangential action. In the case of the earth, the hard stratified crust had to adapt itself to the shrunken diameter of the once much hotter globe. This tangential action is illustrated in our own persons, when age causes the body to shrink in bulk, while the skin, which does not shrink to the same extent, has to accommodate itself to the shrunken interior, and so forms wrinkles—the wrinkles of age. This theory opens up a chapter in geology and physiology well worthy of consideration. It may alike be seen in the structure of the surface of the earth, in an old apple, and in an old hand.*
[footnote... The shrunken hand on the other side is that of Mr. Nasmyth, photographed by himself. According to The Psychonomy of the Hand, by R. Beamish, F.R.S., author of The Life of Sir M. I. Brunel, it exhibits a thoroughly mechanical hand, as well as the hand of a delicate manipulator; illustrating that remarkable expression in the Book of Job, that "in the hand of all the sons of men God places marks, that all the sons of men may know their own works."—ED.

[Image] Shrunken Apple and Hand.*
[footnote... These illustrations serve to illustrate one of the most potent of geological agencies which has given the earth’s surface its grandest characteristics. I mean the elevation of mountain ranges through the contraction of the globe as a whole. By the action of gravity the former larger surface crushes down, as it were, the contracting interior; and the superfluous matter, which belonged to a bigger globe, arranges itself by tangential displacement, and accommodates itself to the altered or decreased size of the globe. Hence our mountain ranges, which though apparently enormous when seen near at hand are merely the wrinkles on the face of the earth.

While earnestly studying the details of the moon’s surface, it was a source of great additional interest to me to endeavour to realise in the mind’s eye the possible landscape effect of its marvellous elevations and depressions. Here my artisic faculty came into operation. I endeavoured to illustrate the landscape. scenery of the Moon, in like manner as we illustrate the landscape scenery of the Earth. The telescope revealed to me distinctly the volcanic craters, the cracks, and the ranges of mountains—by means of the light and shade on the moon’s surface. One of the most prominent conditions of the awful grandeur of lunar scenery is the brilliant light of the sun, far transcending that which we experience upon the earth—enhanced by the contrast with the jet-black background of the lunar heavens,— the result of the total absence of atmosphere. One portion of the moon, on which the sun is shining, is brilliantly illuminated, while all in shade is dark.

While the disc of the sun appears a vast electric light of overpowering rayless brilliancy, every star and planet in the black vault of the lunar heavens is shining with steady brightness at all times; as, whether the Sun be present or absent during the long fourteen days’ length of the lunar day or night, no difference on the absolutely black aspect of the lunar heavens can appear. That aspect must be eternal there. No modification*
[footnote... a small degree of illumination is, however, given to some portions of the Moon’s surface by the Earth-shine, when the earth is in such a position with regard to the Moon, as to reflect some light on to it, as the Moon does to the earth.
...] of the darkness of shadows in the Moon can result from the illuminative effect, as in our case in the earth, from light reflected into shadows by the blue sky of our earthly day The intensity of the contrast between light and shade must thus lend another awful aspect to the scenery of the Moon, while deprived of all those charming effects which artists term "aerial perspective," by which relative distances are rendered cognisable with such tender and exquisite beauty. The absence of atmosphere on the Moon causes the most distant objects to appear as close as the nearest; while the comparatively rapid curvature of the moon, owing to its being a globe only one-fourth the diameter of the earth, must necessarily limit very considerably the range of view.

[Image] Lunar Mountains and Extinct Volcanic Craters

It is the combination of all these circumstances, which we know with absolute certainty must exist in the Moon, that gives to the contemplation of her marvellous surface, as revealed by the aid of powerful telescopes,—one of the grandest and most deeply interesting subjects that can occupy our thoughts; especially when we regard the physical constitution and the peculiar structure of her surface, as that of our nearest planetary neighbour, and also as our serviceable attendant by night.

Then there are the Tides, so useful to man, preserving the sanitary condition of the river mouths and tide-swept shores. We must be grateful for the Moon’s existence on that account alone. She is the grand scavenger and practical sanitary commissioner of the earth. Then consider the work she does! She moves hundreds of ships and barges, filled with valuable cargoes, up our tidal rivers, to the commercial cities on their banks. She thus performs a vast amount of daily and nightly mechanical drudgery. She is the most effective of all Tugs; and now that we understand the convertibility and conservation of force, we may be able to use her Tide-producing powers through the agency of electricity for mechanical purposes. It is even possible that the Tides may yet light our streets and houses!*
[footnote... It is not quite a century since London was in part supplied with water by the Moon, through employing the tidal action by the waters at Old London Bridge, where the tide mills worked the water-supplying pumps.

Is the moon inhabited? It seems to me that the entire absence of atmosphere and water forbids the supposition—at least of any form of life with which we are acquainted. Add to this adverse condition, the fact of the moon’s day being equal to fourteen of our days; the sun shining with much more brilliancy of effect in the moon than on the earth, where atmosphere and moisture act as an important agent in modifying its scorching rays; whilst no such agency exists in the moon. The sun shines there without intermission for fourteen days and nights. During that time the heat must accumulate to almost the melting point of lead; while, on the other hand, the absence of the sun for an equal period must be followed by a period of intense cold, such as we have no experience of, even in the Arctic regions. The highest authorities state that the cold during the Moon’s long night must reach as low as 250 degrees below the freezing point of water. These considerations, I think, reasonably suggest that the existence of any form of life in the Moon is in the highest degree improbable.

The first occasion on which I exhibited my series of drawings of the Moon, together with a map six feet in diameter of its entire visible surface, was at the meeting of the British Association at Edinburgh in 1850. I always looked forward to these meetings with great pleasure, and attended them with supreme interest. My dear wife always accompanied me. It was our scientific holiday. It was also our holiday of friendship. We met many of our old friends, and made many new friends. Alas, how many of them have departed! Herschel, Faraday, Robinson, Taylor, Phillips, Brewster, Rosse, Fairbairn, Lassell, and a host of minor stars, who, although perhaps wanting in the brightness or magnitude of those I have named, made good amends by the warmth of their cheerful rays. We saw the younger lights emerging above the horizon: the men who still continue to shed their glory over the meetings of the Association.

How delightful was our visit to Edinburgh in 1850. It was "mine own romantic town." I remembered its striking features so well. There was the broad mass of the Old Town, with its endless diversity of light and shade. There was the grand old fortress, with its towers and turrets and black portholes. Towards evening the distant glories of the departing sun threw forward, in dark outline, the wooded hill of Corstorphine. The rock and Castle assumed a new aspect every time I looked at them. The long-drawn gardens filling the valley between the Old Town and the New, and the thickly-wooded scars of the Castle rock, were a charm of landscape and a charm of art. Arthur’s Seat, like a lion at rest, seemed perfect witchcraft. And from the streets in the New Town, or from Calton Hill, what singular glances of beauty were observed in the distance—the gleaming waters of the Firth, and the blue shadows among the hills of Fife.

I remembered it all, from the days in which I sat, as a child, beside the lassies watching the "claes" on the Calton Hill and hearing the chimes of St. Giles’s tinkling across the Nor’ Loch from the Old Town; the walks, when a boy, in the picturesque country round Edinburgh, with my father and his scientific and artistic friends; my days at the High School, and then my evenings at the School of Arts; my castings of brass in my bedroom, and the technical training I enjoyed in the workshop of my old schoolfellow; my roadway locomotive and its success; and finally, the making of my tools and machines intended for Manchester, at the foundry of my dear old friend Douglass. It all came back to me like a dream. And now, after some twenty years, I had returned to Edinburgh on a visit to the British Association. Many things had been changed—many relatives and friends had departed—but still Edinburgh remained to me as fascinating as ever.

The excursions formed our principal source of enjoyment during these scientific gatherings. The season was then at its happiest. Nature was in her most enjoyable condition, and the excursionists were usually in their holiday mood. The meeting of the British Association at Edinburgh was presided over by Sir David Brewster. The geologists visited the remarkable displays of volcanic phenomena with which the neighbourhood of Edinburgh singularly abounds. Indeed, Edinburgh owes much of its picturesque beauty to volcanoes and earthquake upheavings. Our excursions culminated in a visit to the Bass Rock. The excursion had been carefully planned, and was successfully carried out. The day was beautiful, and the party was of the choicest. After reaching the little cove of Canty Bay, overlooked by the gigantic ruins of Tantallon Castle, we were ferried across to the Bass; through a few miles of that capricious sea, the Firth of Forth, near to where it joins the German Ocean. We were piloted by that fine old British tar, Admiral Malcolm, while the commissariat was superintended by General Pasley.

We were safely landed on that magnificent sea-girt volcanic rock— the Bass. After inspecting the ruins of what was once a castellated State prison, where the Covenanters were immured for conscience’ sake, we wandered up the hill towards the summit. There we were treated to a short lecture by Professor Owen on the Solan Goose, which was illustrated by the clouds of geese flying over us. They freely exhibited their habits on land as well as in mid-air, and skimmed the dizzy crags with graceful and apparently effortless motions. The vast variety of seafowl screamed their utmost, and gave a wonderfully illustrative chorus to the lecture. It was a most impressive scene. We were high above the deep blue sea of the German Ocean, the waves of which leapt up as if they would sweep us away into the depths below.

Another of our delightful excursions was made under the guidance of my old and dear friend Robert Chambers.*
[footnote... I cannot pass over the mention of Robert Chambers’s name without adding that I was on terms of the most friendly intimacy with him from a very early period of his life to its termination in 1871. I remember when he made his first venture in business in Leith Walk. By virtue of his industry, ability, and energy, he became a prosperous man. I had the happiness of enjoying his delightful and instructive society on many occasions. We had rare cracks on all subjects, but especially respecting old places and old characters whom we had known at Edinburgh. His natural aptitude to catch up the salient and most humorous points of character, with the quaint manner in which he could describe them, gave a vast charm to his company and conversation. Added to which, the wide range and accuracy of his information, acquired by his own industry and quick-witted penetration, caused the hours spent in his society to remain among the brightest points in my memory.

The object of this excursion was to visit the remarkable series of grooved and scratched rocks which had been discovered*
[footnote... They had been first seen, some twenty years before, by Sir James Hall, one of the geologic lights of Edinburgh.
...] on the western edge of the cliff-like boundary of Corstorphine Hill. The glacial origin of these groovings on the rocks was then occupying the attention of geologists. It was a subject that Robert Chambers had carefully studied, in the Lowlands, in the Highlands, in Rhine-land, in Switzerland, and in Norway. He had also published his Ancient Sea Margins and his Tracings of the North of Europe in illustration of his views. He was now enabled to show us these groovings and scratchings on the rocks near Edinburgh. In order to render the records more accessible, he had the heather and mossy turf carefully removed— especially from some of the most distinct evidences of glacial rock-grooving. Thus no time was lost, and we immediately saw the unquestionable markings. Such visits as these are a thousand times more instructive and interesting than long papers read at scientific meetings. They afford the best opportunity for interchange of ideas, and directly produce an emphatic result; for one cannot cavil about what he has seen with his eyes and felt with his hands.

We returned to the city in time to be present at a most interesting lecture by Hugh Miller on the Boulder Clay. He illustrated it by some scratched boulders which he had collected in the neighbourhood of Edinburgh. He brought the subject before his audience in his own clear and admirable viva voce style. The Duke of Argyll was in the chair, and a very animated discussion took place on this novel and difficult subject. It was humorously brought to a conclusion by the Rev. Dr. Fleming, a shrewd and learned geologist. Like many others, he had encountered great difficulties in arriving at definite conclusions on this mysterious subject. He concluded his remarks upon it by describing the influence it had in preventing his sleeping at night. He was so restless on one occasion that his wife became seriously alarmed. "What’s the matter wi’ ye, John? are ye ill?" "On no," replied the doctor, "it’s only that confounded Bounder Clay!" This domestic anecdote brought down the house, and the meeting terminated in a loud and hearty laugh.

I, too, contributed my little quota of information to the members of the British Association. I had brought with me from Lancashire a considerable number of my large graphic illustrations of the details of the Moon’s surface. I gave a viva voce account of my lunar researches at a crowded meeting of the Physical Section A. The novel and interesting subject appeared to give so much satisfaction to the audience that the Council of the Association requested me to repeat the account at one of the special evenings, when the members of all the various sections were generally present. It was quite a new thing for me to appear as a public lecturer; but I consented. The large hall of the Assembly Rooms in George Street was crowded with an attentive audience. The Duke of Argyll was in the chair. It is a difficult thing to give a public lecture especially to a scientific audience. To see a large number of faces turned up, waiting for the words of the lecturer, is a somewhat appalling sight. But the novelty of the subject and the graphic illustrations helped me very much. I was quite full of the Moon. The words came almost unsought; and I believe the lecture went off very well, and terminated with "great applause." And thus the meeting of the British Association at Edinburgh came to an end.

This, however, was not the end of our visit to Scotland. I was strongly urged by the Duke of Argyll to pay him a visit at his castle at Inverary. I had frequently before had the happiness of meeting the Duke and Duchess at the Earl of Ellesmere’s mansion at Worsley Hall He had made us promise that if we ever came to Scotland we were not to fail to pay him a visit. It was accordingly arranged at Edinburgh that we should carry out our promise, and spend some days with him at Inverary before our return home. We were most cordially welcomed at the castle, and enjoyed our visit exceedingly. We had the pleasure of seeing the splendid scenery of the Western Highlands the mountains round the head of Loch Fyne, Loch Awe, and the magnificent hoary-headed Ben Cruachan, requiring a base of more than twenty miles to support him,—besides the beautiful and majestic scenery of the neighbourhood.

But my chief interest was in the specimens of high geological interest which the Duke showed me. He had discovered them in the Island of Mull, in a bed of clay shale, under a volcanic basaltic cliff over eighty feet high, facing the Atlantic Ocean. He found in this bed many beautifully perfect impressions of forest tree leaves, chiefly of the plane-tree class. They appeared to have been enveloped in the muddy bottom of a lake, which had been sealed up by the belching forth from the bowels of the earth of molten volcanic basaltic lava, and which indeed formed the chief material of the Island of Mull. This basaltic cliff now fronts the Atlantic, and resists its waves like a rock of iron. To see all the delicate veins and stalklets, and exact forms of what had once been the green fresh foliage of a remotely primeval forest, thus brought to light again, as preserved in their clay envelope, after they had lain for ages and ages under what must have been the molten outburst of some tremendous volcanic discharge, and which now formed the rock-bound coast of Mull, filled one’s mind with an idea of the inconceivable length of time that must have passed since the production of these Wonderful geological phenomena.

I felt all the more special interest in these specimens, as I had many years before, on my return visit from Londonderry, availed myself of the nearness of the Giant’s Causeway to make a careful examination of the marvellous volcanic columns in that neighbourhood. Having scrambled up to a great height, I found a thick band of hematitic clay underneath the upper bed of basalt, which was about sixty feet thick. In this clay I detected a rich deposit of completely charred branches of what had once been a forest tree. The bed had been burst through by the outburst of molten basalt, and converted the branches into charcoal. I dug out some of the specimens, and afterwards distributed them amongst my geological friends. The Duke was interested by my account, which so clearly confirmed his own discovery. On a subsequent occasion I revisited the Giant’s Causeway in company with my dear wife. I again scrambled up to the hematitic bed of clay under the basaltic cliff, and dug out a sufficient quantity of the charred branches, which I sent to the Duke, in confirmation of his theory as to the origin of the leaf-beds at Mull.*

I received the following reply from the Duke of Argyll dated "Inverary, Nov. 19, 1850": —

"MY DEAR SIR—Am I right in concluding, from the description which; you were so kind as to send to me, that the lignite bed, with its superincumbent basalts, lies above those particular columnar basalts which form the far-famed Giant’s Causeway? I see from your sketch that basalts of great thickness, and in some views beautifully columnar, do underlie the lignite bed; but I am not quite sure that these columnar basalts are those precisely which are called the Causeway. I had never heard before that the Giant’s Causeway rested on chalk, which all the basalts in your sketch do.

[Image] The Astrologers Tower—A Day Dream. By James Nasmyth.

"I have been showing your drawing of ’Udolpho Castle’ and ’The Astrologer’s Tower’ to the Duchess of Sutherland, who is enchanted with the beauty of the architectural details, and wishes she had seen them before Dunrobin was finished; for hints might have been taken from bits of your work. —Very truly yours,


In the year following the meeting of the British Association at Edinburgh, the great Exhibition of all nations at London took place. The Commissioners appointed for carrying out this noble enterprise had made special visits to Manchester and the surrounding manufacturing districts for the purpose of organising local committees, so that the machinery and productions of each might be adequately represented in the World’s Great Industrial Exhibition. The Commissioners were met with enthusiasm; and nearly every manufacturer was found ready to display the results of his industry. The local engineers and tool-makers were put upon their mettle, and each endeavoured to do his best. Like others, our firm contributed specimens of our special machine tools, and a fair average specimen of the steam hammer, with a 30 cwt. hammer-block.

I also sent one of my very simple and compact steam-engines, in the design of which I had embodied the form of my steam hammer—placing the crank where the anvil of the hammer usually stands. The simplicity and grace of this arrangement of the steam-engine were much admired. Its merits were acknowledged in a way most gratifying to me, by its rapid adoption by engineers of every class, especially by marine engineers. It has been adopted for driving the shafts of screw-propelled steamships of the largest kind. The comparatively small space it occupies, its compactness, its get-at-ability of parts, and the action of gravity on the piston, which, working vertically, and having no undue action in causing wearing of the cylinder on one side (which was the case with horizontal engines), has now brought my Steam Hammer Engine into almost universal use*
[footnote... Sir John Anderson, in his Report on the machine tools, textile, and other machinery exhibited at Vienna in 1873, makes the following observations: —"Perhaps the finest pair of marine engines yet produced by France, or any other country, were those exhibited by Schneider and Company, the leading firm in France. These engines were not large, but were perfect in many respects; yet comparatively few of those who were struck with admiration seemed to know that the original of this style of construction came from the same mind as the Steam Hammer. Nasmyth’s Infant Hercules was the forerunner of all the steam hammer engines that have yet been made from that type, which is now being so extensively employed for working the screw propeller of steam vessels."

The Commissioners, acting on the special recommendation of the jury, awarded me a medal for the construction of this form of steam-engine*
[footnote... The Council of the Exhibition thus describe the engine in the awards: — "Nasmyth, J., Patricroft, Manchester, a small portable direct-acting steam-engine. The cylinder is fixed, vertical and inverted, the crank being placed beneath it, and the piston working downwards. The sides of the frame which support the cylinder serve as guides, and the bearings of the crank-shaft and fly-wheel are firmly fixed in the bed-plate of the engine. The arrangement is compact and economical, and the workmanship practically good and durable." (See illustration of the design, page 424.)
...] as it was merely a judicious arrangement of the parts, and not, in any correct sense of the term, an invention, I took out no patent for it, and left it free to work its own way into general adoption. It has since been used for high as well as low-pressure steam— an arrangement which has come into much favour on account of the great economy of fuel which results from using it.

A Council Medal was also awarded to me for the Steam Hammer. But perhaps what pleased me most was the Prize Medal which I received for my special hobby—the drawings of the Moon’s surface. I sent a collection of these, with a map, to the Exhibition. They attracted considerable attention, not only because of their novelty, but because of the accurate and artistic style of their execution. The Jurors, in making the award, gave the following description of them: "Mr. Nasmyth exhibits a well-delineated map of the Moon on a large scale, which is drawn with great accuracy, the irregularities upon the surface being shown with much force and spirit; also separate and enlarged representations of certain portions of the Moon as seen through a powerful telescope: they are all good in detail, and very effective."

My drawings of the Moon attracted the special notice of the Prince Consort. Shortly after the closing of the Exhibition, in October 1851, the Queen and the Prince made a visit to Manchester and Liverpool, during which time they were the guests of the Earl of Ellesmere at Worsley Hall. Finding that I lived near at hand, the Prince expressed his desire to the Earl that I should exhibit to Her Majesty some of my graphic lunar studies.

On receiving a note to that effect from the Countess of Ellesmere, I sent a selection of my drawings to the Hall, and proceeded there in the evening. I had then the honour of showing them to the Queen and the Prince, and explaining them in detail. Her Majesty took a deep interest in the subject, and was most earnest in her inquiries. The Prince Consort’ said that the drawings opened up quite a new subject to him, which he had not before had the opportunity of considering. It was as much as I could do to answer the numerous keen and incisive questions which he put to me. They were all so distinct and cogent. Their object was, of course, to draw from me the necessary explanations on this rather recondite subject. I believe, however, that notwithstanding the presence of Royalty, I was enabled to place all the most striking and important features of the Moon’s surface in a clear and satisfactory manner before Her Majesty and the Prince,

I find that the Queen in her Diary alludes in the most gratifying manner to the evening’s interview. In the Life of the Prince Consort (vol. ii. p. 398), Sir Theodore Martin thus mentions the subject: — "The evening was enlivened by the presence of Mr. Nasmyth, the inventor of the steam hammer, who had extensive works at Patricroft. He exhibited and explained the map and drawings in which he had embodied the results of his investigations of the conformations of the surface of the Moon. The Queen in her Diary dwells at considerable length on the results of Mr. Nasmyth’s inquiries. The charm of his manner, in which the simplicity, modesty, and enthusiasm of genius are all strikingly combined, are warmly dwelt upon. Mr. Nasmyth belongs to a family of painters, and would have won fame for himself as an artist —for his landscapes are as true to Nature as his compositions are full of fancy and feeling—had not science and mechanical invention claimed him for their own. His drawings were submitted on this occasion. and their beauty was generally admired.*
[footnote... In his lecture on the "Geological Features of Edinburgh and its Neighbourhood," in the following year, Hugh Miller, speaking of the Castle Rock, observed: —"The underlying strata, though geologically and in their original position several hundred feet higher than those which underlie the Castle esplanade, are now, with respect to the actual level, nearly 200 feet lower. In a lecture on what may be termed the geology of the Moon, delivered in the October of last year before Her Majesty and Prince Albert by Mr. Nasmyth, he referred to certain appearances on the surface of that satellite that seemed to be the results, in some very ancient time, of the sudden falling in of portions of an unsupported crust, or a retreating nucleus of molten matter; and took occasion to suggest that some of the great slips and shifts on the surface of our own planet, with their huge downcasts, may have had a similar origin. The suggestion is at once bold and ingenious."

The next time I visited Edinburgh was in the autumn of 1853. Lord Cockburn, an old friend, having heard that I was sojourning in the city, sent me the following letter, dated "Bonally, 3rd September," inviting me to call a meeting of the Faithful:

"MY DEAR Sir—Instead of being sketching, as I thought, in Switzerland, I was told yesterday that you were in Auld Reekie. Then why not come out here next Thursday, or Friday, or Saturday, and let us have a Hill Day? I suppose I need not write to summon the Faithful, because not having been in Edinburgh except once for above a month, I don’t know where the Faithful are. But you must know their haunts, and it can’t give you much trouble to speak to them. I should like to see Lauder here. And don’t forget the Gaberlunzie.—Ever,

[footnote... James Ballantine, author of The Gaberlunzie’s Wallet. In August 1865 Mr. Ballantine wrote to me saying: "If ever you are in Auld Reekie I should feel proud of a call from you. I have not forgotten the delightful day we spent together many years ago at Bonny Bonally with the eagle-eyed Henry Cockburn!"

The meeting came off. I collected a number of special friends about me, and I took my wife to the meeting of the Faithful. There were present David Roberts, Clarkson Stanfield, Louis and Carl Haag, Sir George Harvey, James Ballantine, and D. O. Hill—all artists. We made our way to Bonny Bonally, a charming residence, situated at the foot of the Pentland Hills.*
[footnote... The house was afterwards occupied by the lamented Professor Hodgson, the well-known Political Economist.
...] The day was perfect—in all respects "equal to bespoke." With that most genial of men, Lord Cockburn, for our guide, we wandered far up the Pentland Hills. After a rather toilsome walk we reached a favourite spot. It was a semicircular hollow in the hillside, scooped out by the sheep for shelter. It was carpeted and cushioned with a deep bed of wild thyme, redolent of the very essence of rural fragrance.

We sat down in a semicircle, our guide in the middle. He said in his quaint peculiar way, "Here endeth the first lesson." After gathering our breath, and settling ourselves to enjoy our well-earned rest, we sat in silence for a time. The gentle breeze blew past us, and we inhaled the fragrant air. It was enough for a time to look on, for the glorious old city was before us, with its towers, and spires, and lofty buildings between us and the distance. On one side Arthur’s Seat, and on the other the Castle, the crown of the city. The view extended far and wide—on to the waters of the Forth and the blue hills of Fife. The view is splendidly described by "Delta": —

"Traced like a map, the landscape lies
In cultured beauty, stretching wide:
Here Pentland’s green acclivities,—
There ocean, with its swelling tide,—
There Arthur’s Seat and gleaming through
Thy Southern wing, Dull Edin blue!
While, in the Orient, Lammer’s daughters,—
A distant giant range, are seen;
North Berwick Law, with cone of green,
And Bass amid the waters."

Then we began to crack, our host leading the way with his humorous observations. After taking our fill of rest and talk, we wended our way down again, with the "wimplin’ burn" by our side, fresh from the pure springs of the hill, whispering its welcome to us.

We had earned a good appetite for dinner, which was shortly laid before us. The bill of fare was national, and included a haggis:

"Fair fa’ your honest sonsie face,
Great chieftain o’ the puddin’ race!
Weel are ye wordy o’a grace
As lang’s my arm!"

The haggis was admirably compounded and cooked, and was served forth by our genial host with all appropriate accompaniments. But the most enjoyable was the conversation of Lord Cockburn, who was a master of the art—quick ready, humorous, and full of wit. At last, the day came to a close, and we wended our way towards the city.

Let me, however, before concluding, say a few words in reference to my dear departed friend David Oswald Hill. His name calls up many recollections of happy hours spent in his company. He was, in all respects, the incarnation of geniality. His lively sense of humour, combined with a romantic and poetic constitution of mind, and his fine sense of the beautiful in Nature and art, together with his kindly and genial feeling, made him, all in all, a most agreeable friend and companion. "D. O. Hill," as he was generally called, was much attached to my father. He was a very frequent visitor at our Edinburgh fireside, and was ever ready to join in our extemporised walks and jaunts, when he would overflow with his kindly sympathy and humour. He was a skilful draughtsman, and possessed a truly poetic feeling for art. His designs for pictures were always attractive, from the fine feeling exhibited in their composition and arrangement. But somehow, when he came to handle the brush, the result was not always satisfactory—a defect not uncommon with artists. Altogether, he was a delightful companion and a staunch friend, and his death made a sad blank in the artistic society of Edinburgh.


Related Resources

None available for this document.

Download Options

Title: James Nasmyth: Engineer; an Autobiography

Select an option:

*Note: A download may not start for up to 60 seconds.

Email Options

Title: James Nasmyth: Engineer; an Autobiography

Select an option:

Email addres:

*Note: It may take up to 60 seconds for for the email to be generated.

Chicago: James Nasmyth, "Chapter 18. Astronomical Pursuits.," James Nasmyth: Engineer; an Autobiography, ed. Smiles, Samuel, 1812-1904 in James Nasmyth: Engineer; an Autobiography Original Sources, accessed March 20, 2023, http://www.originalsources.com/Document.aspx?DocID=LACES28KPHJ9GIL.

MLA: Nasmyth, James. "Chapter 18. Astronomical Pursuits." James Nasmyth: Engineer; an Autobiography, edited by Smiles, Samuel, 1812-1904, in James Nasmyth: Engineer; an Autobiography, Original Sources. 20 Mar. 2023. http://www.originalsources.com/Document.aspx?DocID=LACES28KPHJ9GIL.

Harvard: Nasmyth, J, 'Chapter 18. Astronomical Pursuits.' in James Nasmyth: Engineer; an Autobiography, ed. . cited in , James Nasmyth: Engineer; an Autobiography. Original Sources, retrieved 20 March 2023, from http://www.originalsources.com/Document.aspx?DocID=LACES28KPHJ9GIL.